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POSSIBILITIES FOR CONSTRUCTING A UNIFIED FAILURE THEORY 

A. G. Ivanov UDC 539.4 

The abundance of existing and newly developed materials and the various conditions for 
using them has led to creation of numerous, as a rule, semiempirical theories, criteria, 
concepts of failure, each of which holds for an experimentally studied range of change in 
parameters. These special theories together with previous experience of strength analysis 
have made it possible for a certain time to be limited to them. However, further development 
of technology in the direction of creating large unique objects intended for operating under 
conditions of intense dynamic loads, the impossibility in a number of cases of carrying out 
full-scale tests for these objects in order to explain their actual strength margins, and also 
continuing cases of unpredicted catastrophic failure for certain objects built in accordance 
with existing strength standards, require not so much development and creation of new fail- 
ure criteria, as the requirement of finding a single physically substantiated approach to the 
problem as a whole, if only at the level of phenomenology without considering the fine details 
of failure phenomena and complicating circumstances. This theory with a capacity to some ex- 
tent or other to combine special criteria (concepts) for failure should be built up taking 
account of the generally accepted fact, i.e., failure calculated for the whole in parts, is 
completion of work in proportion to the fracturesurface. Therefore, work and energy spe- 
cific for a unit of surface should act as criterial values. In fact, use of an energy ap, 
proach with local consideration of conditions of a changeover of a crack to unsteady growth 
explains the vigorous development and success in understanding many details and features of 
brittle failure achieved by fracture mechanics (FM). Attempts to use FM for describing other 
forms of failure have been fruitful. However, it is not in a state of combining and de- 
scribing all forms of it [i, 2]. 

Recently in works by the author with co-workers, and also by other domestic and over- 
seas researchers a study has been carried out of failure for dynamically loaded shells. On 
the one hand these studies have made it possible to reveal a number of new effects not found 
in FM, and on the other hand, based on energy balance applied to the whole object in question 
or specified parts of it, to describe these phenomena and understand their physical nature. 
In future we call this the integral approach (IA) in contrast to the local approach used in 
FM. The integral approach makes it possible to look at the problem as a whole and to find 
a scheme for constructing an overall theory for failure. Previously such an attempt using 
the IA was made in [3]. Studies performed subsequently using the IA [3-14] provide a basis 
for its fruitfulness and necessity of developing it further. 

We consider failure of a material cube with edge L stretched by forces oL 2 at two op- 
posite faces. The rest of the faces are free. We also assume a piecewise linear rule for 
material deformation and it consists of an elastic region where 

= ~E ( 1 )  

up to o = Oy, where Oy is yield stress (and elastic limit) for the material and region for 
plastic strain (o > Oy): 
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Fig. 1 

o = e y +  K(e - -  ~y/E) (2 )  

(E and K a r e  Y o u n g ' s  and s t r e n g t h e n i n g  m o d u l i ) .  

We turn attention to brittle failure occurring in small time intervals comparable with 
t ~ L/c (where c is sound velocity in the material). Work of external forces oL 2 for the 
time of failure may be ignored and it may be assumed that in completing the work of separa- 
tion IL 2 only the reserve of elastic energy (EE) may be expended existing at the start of 
failure in the cube 02L3/2E (i is specific work for failure per unit of surface). It is 
evident that a required condition for failure, or nonfailure, is written as 

o2La/(2E) >~ ~L2; (3) 
~2LaI(2E)' < ~L2" (4) 

Expression (3) on coordinates N - L (N = 21E/o 2) in Fig. 1 corresponds to the region 
LOB also including the line OB, and inequality (4) corresponds to region NOB. It is evident 
that for prescribed o and L the less the ratio of the right-hand part to the left (N/L) com- 
pared with one (line OB), the greater the reserve of EE compared with the work required for 
breaking the cube, and conversely the greater this ratio, the more reliable is the possibil- 
ity of its failure excluded. Therefore, beams emerging from point O on the N vs L diagram 
in region NOB relate to a condition with an identical "safety factor," and in region BOL they 
characterize the degree of risk of possible failure. Horizontal lines N i (assuming that E 
and I do not depend on L), relate to different o i. With N = ~, o = 0, and with N = 0 the 
physically unachievable value o = ~. For a cube with prescribed L i gradual loading from 

o = 0 to o = o i corresponds to movement along vertical L = L i from infinity toNz= 2%E/~i 2. 

By finding line N with o = Ov (No = 2El/o~) we divide each of regions LOB and NOB into 
two regions (1-4 in Fig. i). In {he upper regions strain is elastic, and in the lower re- 
gions it is plastic [according to (i) and (2)]. The value L = L 0 at the point of intersec- 
tion of line OB and N = N O is determined as the material brittleness threshold. This is 
the minimum L at which failure is possible in the elastic deformation region. 

Thus, the possibility of developing brittleness or ductility for the same material in 
relation to L is an objective property of the material resulting from the IA to the problem 
of failure. 

Typical values of L 0 calculated for certain materials with T ~ 300 K are given in Table 
I, whence it follows that in the range of change of L 0 for actual materials extends not less 
than eight orders of magnitude, and therefore the position of line N O in Fig. 1 in contrast 
to line OB is markedly individual. For a specific material L 0 is not constant since I, E, 
and particularly Oy determining it are functions of temperature T, loading rate o, or strain 
rate ~. The position of L 0 depends also on the type of stressed state. Thus, the change in 
tensile forces to compressive leads to brittle failure with stresses greater by a factor of 
~-i, and in a plane parallel to the compressive forces a multiple ~2 (v is Poisson's ratio) 
appears in L 0. 
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TABLE 1 

Parameter 

E, GPa 
~.I0-~, J/m 2 
~y MPa 

Lo, m 

ill e ~ 

i30 200 
0,3 4,7 

30,6 350 
8,33 t,53 

st. 3 

~ 200 
t,0 
250 
0,64 

St. 40Kh 
(hardened) 

200 
i , 3  
986 

0,053 

Organic 
glass 

3,6 
0,t2 
t20 

0,006 

Glass 

95 
92. t0 -5 

>3800 
<t ;2 . t0  -s 

We move to characteristic regions 1-4 in the N vs L diagram. 

Region i. Nonfailure condition (4) is fulfilled. All states of the region are safe for 
cube operation. With stable uniform conditions with an increase in L (changeover from state 
a 0 to a l) or with an increase in o (changeover from a 0 to a 2) new states appear on the beams 
for less strength reserve. Possible values of L 0 are bounded by line OB, and for Oy, L = L 0. 
With a change to stronger material or with a change in loading conditions (T, o) leading to an 
increase in Oy with unchanged X and E, the value of L 0 falls. In particular, for pulsed 
loads when toughness component Oy arises, and in region 1 a cube of fluidity may appear, 
although for fluidity under static conditions Oy = 0. 

For this region the most marked processes changing values of l, Oy, and E for the ma- 
terial are slowly flowing processes of structural defect accumulation, i.e., aging, as a 
result of which the state of the cube may move into another region. 

Region 2 (assemblage of elastic deformation and brittle failure states). Necessary con- 
dition for failure (3) is fulfilled. The flatter the beam OB for the point characterizing 
the state of the cube, the greater the excess of the plastic energy safety factor over the 
work for failure, the lower the measure of material damage necessary in order to fulfill the 
sufficiency condition, and the more intense will be the process of failure. However, if the 
sufficiency condition is not fulfilled (there is no critical Griffiths crack, structural de- 
fect, anomalous region of overstressing, etc.), failure does not occur. Therefore, if the 
diagnostics for defects during operation for the cube in question are at a quite high level, 
and failure of it does not lead to catastrophic Consequences, then the condition of region 2 
or part of it adjacent to line OB may also be considered as suitable for operation. 

Failure of two cubes of different size L I and L 2 in the states of region 2 may be ac- 
companied by strong scale effects (SE). If the states are located on beam OB with the same 
degree of risk (points bl, b2), then for them inequality (3) may be written as 

~2L~/(2E) = AEL ~, ( 5 )  

where A is ratio of EE safety margin to the work of failure for line OB i (for OB, A = i). By 
substituting values of L I and L 2 in (5) and taking their ratio, we obtain 

~11~2 ~ ]'/'L21L1. ( 6 )  

Thus, with fulfillment of Eq. (5) and the sufficiency condition, failure of different 
size cubes will occur with different o. It is also evident that cubes of the same size but 
having defects of different size will fail with different stresses relating to lines of the 
different degree of risk (points b2, b3, b4). This dispersion of brittle strength, which 
is contrary to that expected, is not described by statistical strength theory [15]. If the 
conditions for cubes L l and L 2 are described by points on different beams, then this may 
either strengthen the SE (points bl, b4), or weaken it (points bl, b a) compared with that 
predicted by Eq. (6). It is noted that if a cube is prepared from traditional plastic ma- 
terial (plasticity is determined by available standard methods) but its condition lies in 
region 2, then it is not possible to exclude brittle failure. With stable uniform condi- 
tions the probability of this event will grow together with L. 

Region 3. Here, as in region 2, the necessary condition for failure is fulfilled. 
Failure in this region is preceded by plastic deformation which leads to the following char- 
acteristics: a) l, E, ~ changing weakly in regions 1 and 2 as structural defects increase 
with an increase in s affect functions g and t. The description of cube failure is markedly 
complicated and it requires knowledge of these functions; b) with an increase in s there is 
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a sharp increase in internal friction for the material making conditions for transfer of EE 
difficult; there is a reduction in the neighborhood of the failure zone from which it is 
possible to remove EE. Therefore if the neighborhood of N o and SE and dispersion of brittle 
strength are still possible, then with departure from No, these effects at least with static 
loading should disappear. Accumulation of macroscopic defects ahead of failure should ac- 
quire a more local and aggregate character; c) with relatively small ~ the nature of failure 
is maintained in the form of material breakage. However, with an increase in g a changeover 
to shear failure might be expected along selected weakened planes of structural defect local- 
ization. In spite of an increase in the failure surface for a cube in shear, from an energy 
point of view this failure process will apparently be more favorable; d) with large values 
of E, particularly with a dynamic effect, the proportion of energy expended directly in 
failure (~%L 2) is negligibly small compared with the plastically dissipated and kinetic parts 
of the energy. 

Region 4. As for region I, for points of this region the nonfailure condition is ful- 
filled, but in contrast to region 1 the cube material is subject to irreversible strains which 
in a number of cases limits the possibility of its operation, and as shown above, complicates 
the description process. In region 4 processes of accumulation and increase in material 
structural defects with time are typical, i.e., processes of aging and so-called dissipa- 
tion of failure within the volume of the material, as also for region 3, with high values 
of ~, but without merging of these zones along some failure surface. 

To what extent is this consideration for a hypothetical o vs ~ (i), (2) diagram and an 
elementary object, i.e., a cube, applicable for real ovs e diagrams for materials and more 
complex objects with not such trivial stressed states? Where is the place in the N vs L 
diagram for existing strength criteria (concepts, theories)? 

The changeover to o vs ~ diagrams for real materials, with the exception of some pos- 
sible complication in calculations, is not significantly reflected in the N vs L diagram. 
A changeover to a real object is more complicated. As in the example with a cube, by vary- 
ing L we assume that all of the dimensions of the object change in a geometrically similar 
way, and the stressed state is retained (naturally, apart from derivatives with respect to 
o and E along the coordinate and time*). Thus, consideration in the plane N vs L will be 
limited to considering geometrically similar objects (GS0) loaded identically. For L and o 
we take any typical values for a given object (for example, for a spherical vessel as L it 
is possible to take any of its radii, and for o it is possible to take its maximum value 
with selected R). With a complex stressed state for o it is possible to take a value of 
relative stress. The permissible arbitrariness in determining L and o is balanced by intro- 
ducing coefficients C i instead of 2 in expressions (3) and (4). Coefficient A, as previ- 
ously in [5], is the ratio of reserve of EE to the work for failure. It is apparent that for 
each form of the GSO considered loaded identically the position of line N0i, similar No, as 
also for L0i similar to L0, will also be its own. For a number of cases a knowledge of C i 
is not obligatory. For example, we find L0i for soft steel with spalling failure. The ef- 
fective value of ay is Oef = KiKzK3oy, where K I = (i - v)/(l - 2~) considers the change in 
stressed state; K 2 = 4.5 considers the change in Oy as a result of high-velocity shock load- 
ing; K 3 = 2 considers unloading wave propagation through a previously compressed material. 
Then Oef ~ 16Oy and L0i = 2.5 mm instead of L 0 = 640 mm. Failure of soft steel by spalling 
should be considered as brittle, and its description is given in [16]. 

How is it possible to supplement characteristics of regions 1-4 of Fig. 1 with a change- 
over to the simplest GSO and where is it possible to use the most widespread strength cri- 
teria? It is evident that all critical objects or their supporting assemblies whose failure 
is fought with catastrophic consequences should relate to the conditions of region i and 
not only under normal conditions of prolonged loading, but also with accident situations and 
extreme loads. Since the conditions of region 1 relate to lightly loaded objects, then a 
reduction in their specific material content, weight, and an increase in load may be achieved 
by total or partial use of a directional composite or rolled material free from a SE of an 
energy nature, or where possible substitution of a single object by a larger number of GSO 
with a lower value of L [8, 9]. 

In determining boundaries for the region, and in particular line OB, complications may 
arise if instead of k use is made of its analog, i.e., the value of 2~ determined by the FM 

*The difference in behavior of materials as a result of nonconformity of values of o and ~ for 
GSO is small and it cannot be considered. For steels with changes in ~ by a factor of ten 
the Oy changes by not more than 5%. 
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method. According to [17] I and 2y, which coincide with low T, diverge with an increase in 
T. The reason for this behavior is apparently connected with incorrect determination of 2y. 
With normal T for soft steels 2y may exceed I by a few factors. 

In this region use of strength criteria which are traditional for the heading of mate- 
rial strength based on limiting values of o, s, o2/2E is permissible. It is possible to 
advance as these values o = Oy and E = oy/E, and relatively they may be determined for the 
"safety factor." In fact, these values of safety factor as noted previously depend on the 
position of points governing the state of GSO. For states placed on a single beam of equal 
safety factor B k (point a I and a 2) traditional values, for example failure o, may differ 
markedly. An object from state a I may fail in a brittle way with o < Oy, and from state a 2 
it may only fail in the region of plastic flow with o > Oy. Even greater is the difference 
in safety factors for different size objects loaded with the same intensity (points a 0 and 

al). 

We move to region 2. Creation and use of high-strength materials (with high Oy) with 
the aim of easing construction on one hand and an attempt to develop even larger objects on 
the other, leads to the situation that region 2 of the N vs L diagram is even more impor- 
tant for technology and in fact for this region the problem of brittle failure has appeared 
in the last i0 years as a central one and led to the vigorous development of FM. Since the 
required condition for failure in region 2 is fulfilled, it is particularly important to 
acquire diagnostics for defects with the aim of not permitting fulfillment of the sufficiency 
condition for changeover of an object into an equilibrium state, i.e., failure. In order to 
understand the degree of possible risk, information is important about the value of coeffi- 
cient A for the object in question. Loading rate for the object has a strong effect on the 
state of this region. Experiments for high-velocity pulsed failure of vessels and spalling 
separation of a material provide a basis for assuming that with quite intense loading fulfill- 
ment of the required failure condition (3) automatically leads to satisfaction of the suffi- 
ciency condition [6, 8]. The validity of this assertion follows from the coincidence of 
the start of failure for selected lines ~nd even planes [14, 18], and high-velocity failure 
itself may exhibit a number of features. Thus, such specific shock-wave failure as spalling 
logically falls within the general N vs L diagram [3, 16]. Some deviation from it for spe- 
cific materials is explained by the unconsidered influence of such effects as phase transi- 
tion, a different degree of dynamic strengthening for different materials, etc. In total con- 
formity with that stated previously are strong SE with failure and appearance of dispersion 
for brittle strength in region 2. For states with a large excess of EE (A ~ i) failure 
will occur by a type of explosion with formation of a large number of fragments [19]. 

These conditions are energetically favorable for realizing processes of crushing and 
grinding. In fact, in analyzing the states of region 2 the greatest success of FM is 
achieved. 

In substituting a cube by other GSO all of that said previously in relation to region 
3 of the N vs L diagram is entirely retained. In region 2 with small plastic strains (0.5- 
1.0%) strong SE develop, which was observed with standard static tests in [5, 20]. With dy- 
namic failure of different thickness elliptical vessels made of St. 22K [6] with strains 
up to !%, other effects were observed besides development of strong SE. Brittle failure of 
vessels, which is typical in the elastic region of strains (region 2), becomes ductile with 
a reduction in vessel size.* There is also a cardinal change in the position of a weak area 
of a vessel. With failure in the elastic region, crack generation, development, and propaga- 
tion occur from the place of greatest stress concentration perpendicular to the weld and the 
thinnest area of the shell. With failure under plastic deformation conditions a crack propa- 
gates through a thin area of the shell parallel to a welded joint. 

An increase in dissipative losses with an increase in the degree of plastic deformation 
makes occurrence of wave processes difficult and it severely limits the region from which 
it is possible to remove EE in forming breakage. The extent of this region ceases to depend 
on the characteristic size of the object, and an SE of an energy nature disappears. In fact, 
this is confirmed in standard static tests for tensile failure of different size specimens 
of "ductile" materials. A more careful study of the failure of specimens made of St. 12Kh- 
18NIOT showed existence of a weak SE (change in 8o ~ 5% with LI/L 2 = 6), apparently of a pro- 
duction nature. Transfer to a high-velocity dynamic effect markedly complicates the occur- 
rence of processes and leads to an increase in EE as a result of an increase in Oy, and 

*Failure of equally thick shells and with strain at 1.5% remained brittle [21]. 
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simultaneously time limits are imposed on the process of removing EE and completion of fail- 
ure. Analysis of the phenomena from the position of IA made it possible to describe theo- 
retically and to confirm experimentally existence of dynamic peak in ductility for soft 
steels [4, 11-13]. A study of some deformation equations showed various behavior of materials 
with dynamic failure and the possibility of describing high-velocity fragmentation with large 
plastic strains for cylindrical shells and cumulative jets [7, i0]. 

Returning to existing strength theory, it should be concluded that in the elastoplastic 
region deformation with not very high values of s there is currently successful use of FM and 
modifications of it [22], and in the region of high plastic strains with static loads during 
creep, etc., there is successful use of traditional strength theories based on using critical 
values of s, o, and combinations of them. 

It is substantially more complicated to use FM in order to describe failure of object 
with high strain rates under conditions of intense loading when the object fails and it is 
not possible to indicate the weak area beforehand. Shells and also rings loaded suddenly 
from within by an applied pressure may be related to these objects. 

In the last i0 years criteria based on the Taylor approach have been added to the suc- 
cession of traditional failure criteria based on critical values of E and o. According to 
this approach failure of a shell sets in immediately, as soon as hoop stresses over the 
whole cross section become tensile. However, these criteria are in contradiction with ex- 
periments. In fact, two geometrically similar shells loaded in a similar way (taking ac- 
count of small correction for the difference in ~) should fail with E = const independent of 
R, and a pulsed rapidly expanding ring should fail immediately on completion of pulse oper- 
ation. The experiment is in sharp contradiction to the prognosis. In the Taylor approach 
there is no place for the dynamic peak of plasticity for which experimental confirmation has 
been obtained in [II, 12, and others]. 

Region 4 of the N vs L diagram for more complicated objects than cubes may be described 
by theories for damage accumulation within the volume of the material of the kinetic strength 
concept (KSC) type and to a lesser extent to its analog 

~ = c o n s t .  ( 7 )  

This  r e l a t i o n s h i p  i s  f a r  f rom a lways  be ing  c o r r e c t .  I n  (7)  �9 i s  m a t e r i a l  e n d u r a n c e  w i t h  a 
prescribed value of s. The scattered failure arising (failure within the volume of the ma- 
terial) does not contradict nonfulfillment of the necessary loading condition (3). The pro- 
cess of combining scattered failure within the volume into a global crack may be considered 
as a consequence of gradual creep over the point describing the initial state of the object 
(point a~ of region 4 or even point a 3 of region i), and in region 3 (points b 6, b 7) as 
structural defects accumulate. 

Close in substance to the KSC is a semiempirical approach to studying the kinetics of 
increase in material defectiveness after different actions up to achieving a critical value 
with which failure occurs. This approach [23], as also the KSC, has been used in recent 
years by a number of authors in order to describe spalling failure. Since one and the same 
material may fail both in region 2 (point b~), i.e., with o ~ Oy, where material defective- 
ness is low, and in region 3 (point b 6) with o ~ o v, then it is evident that the degree of 
defectiveness as a failure criterion may only be used in a narrow range of change in initial 
conditions. 

Thus, the scheme suggested for building a general failure theory on the basis of the 
energy IA makes it possible: 

to combine in a single scheme both brittle failure with static [9] and extremely high 
dynamic loads [3], and failure in the region of high ductility with high strain rates 
[41; 

to understand the place of a number of criteria (theories, concepts) for strength in this 
scheme by confirming the thesis that the nature of failure is common; 

to formulate conditions for safe construction of objects; 

to confirm the possibility of the development of strong SE of an energy nature in ex- 
plicit form with failure of GSO loaded dynamically [5, 6]. These effects with static 
loads appear in terms of dispersion of brittle strength, and for ductile matrials as 
unexpected brittle failure for large objects [9]; 
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to look more critically at actual safety factors for large objects planned without con- 
sideration of the possible development of SE of an energy nature; 

to conclude that such material properties as brittleness and ductility with stable 
uniform conditions depend on the characteristic size of an object, and to introduce an 
understanding of brittleness threshold; 

to exclude the possibility of development of a SE of an energy nature if with prepara- 
tion of GSO a characteristic size is retained for the force element. This condition 
relates to unidirectional composite materials loaded in the reinforcement direction 
[14]; 

to describe and physically comprehend the dependence of failure stress with spalling on 
time of tensile load operation established by experiment [3, 16]. Analysis of the form 
of temperature dependence for Ospa makes it possible to conclude the incorrectness of 
determining Kic in FM with high T [17]; 

to understand the physical nature and to describe mathematically the dynamic plasticity 
peak for materials having a toughness component for strength [4, 7, ii, 12], and to ad- 
vance in the clarification of the mechanism for crushing of shells and breakup of cumula- 
tive jets [i0]. 
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PRESSING OF A COMPACT PLASTIC MATERIAL 

S. E. Aleksandrov and B. A. Druyanov UDC 621.762 

Pressing in a closed mold has been considered by many authors [1-5]. In contrast to 
others, it is shown in the present work that the compaction process occurs in two stages: in 
the first deformation it is only in the region adjacent to the piston, and in the second it 
is in the whole volume of the material. In the first stage around the bottom of the mold 
there is a rigid (undeformed) zone. The position of the boundary between the rigid and de- 
forming zones depends on the amount of upsetting. The first stage ends when this boundary 
reaches the bottom of the mold. Presence of a densification front is confirmed by experi- 
ment [6]. 

With relatively low density at the rubbing surfaces the Coulomb friction rule operates. 
With an increase in density normal pressure and frictional force grow in an unlimited way 
and at a certain instant reach a maximum value permissible by the flow condition. Then the 
Coulomb friction rule is not valid and the Prandtl friction rule takes effect. The exis- 
tence of two friction zones, i.e., Coulomb and Prandtl, at the rubbing surfaces is possible 
at a certain stage of the process. With a further increase in density the Coulomb zone dis- 
appears and the Prandtl rule operates on the whole surface of the mold. 

Statement of the Problem. We consider pressing of an axisymmetrical sleeve with an 
internal rod. We introduce a cylindrical coordinate system (r, 8, z), axis z of which coin- 
cides with the axis of symmetry of the pressed article [Fig. i: i) mold; 2) piston; 3) rod]. 

The radial velocity of particles v r should revert to zero at the surface of the rod and 
the mold wall, i.e., this value is small. We assume that v r = 0. The corresponding equi- 
librium equation of obtained by the Hill method [7]. The equation of virtual powers has the 
form 

R2 h " R2 ~ h '! r = R z  

R I 0 R 1 z=h  0 r ~ R f  

Here R 2, RI a re  mold and r od  r a d i i ;  h i s  c u r r e n t  b l a n k  h e i g h t ;  v z i s  p r o j e c t i o n  o f  v e l o c i t y  
on a x i s  z ;  o z ,  T rz  a re  n o r m a l  and t a n g e n t i a l  s t r e s s  t e n s o r  components .  

I n  o r d e r  t o  s a t i s f y  b o u n d a r y  c o n d i t i o n s  a t  t h e  bo t t om  o f  t h e  c o n t a i n e r  and base o f  t h e  
p i s t o n  we assume t h a t  v z does n o t  depend on r ,  and we p e r f o r m  i n  t h e  l e f t - h a n d  p a r t  o f  Eq. ( 1 )  
i n t e g r a t i o n  w i t h  r e s p e c t  t o  p a r t s :  

S i n c e  v z i s  a d e r i v a t i v e  o f  f u n c t i o n  z ,  t h e n  f r o m  ( 2 )  i t  f o l l o w s  t h a t  t h e  e x p r e s s i o n  i n  
s q u a r e  b r a c k e t s  s h o u l d  be  e q u a l  t o  z e r o .  The e q u i l i b r i u m  e q u a t i o n  i s  w r i t t e n  a s  
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